Abstract: A phytochemical study of the stems of Citrus limettiodes Tanaka afforded a novel flavonoid, characterized as 5,4′-dihydroxy, 3′-(3′′-methyl but -2′′-eny1) 3, 5′-6'-trimethoxy flavone 7-O-β-D-glucopyranoside.

Key words: Citrus limettiodes Tanaka, 5, 4 − dihydroxy 3' - (3” ‘-methyl but -2’’ -eny1) 3 , 5′-6'-trimethoxy flavone 7-O-β-D-glucopyranoside.

I. Introduction

Citrus limettiodes Tanaka (N.O. Rutaceae) (1, 2) commonly known as ‘Mitha Nibu’ is widely cultivated in all subtropical regions. The fruits of the plant are useful as refrigerant in fever and jaundice, biliousness, brain troubles and have tendency to haemorrhage. The rind is anheuristic, astringent to the bowels, cooling and strengthen the gums and teeth (3). Systematic examination of the metabolites present in Citrus Limettiodes Tanaka has revealed the presence of d-limonene,sterol esters (4), Plcitran (5), flavanone glycosides (6) and ascorbic acid (7). The isolation and identification of a 3-methoxy flavone: 5, 4′-dihydroxy 3′-(3′′-methyl but-2′′-eny1), 3, 5′-6'-trimethoxy flavone 7-O-β-D-glucopyranoside is given.

II. Materials and Methods

The plant material was collected from United Chemicals and Allied products, 10 Clive Row, Calcutta-1, India.

Instruments

Melting points : Buchi melting apparatus, uncorrected; UV : Hitachi 320 spectrophotometer; MS : Jeol-D-300 (El/Cl) 60 eV: IR : Perkin Elmer 881 spectrometer, 1H-NMR : Varian FT – 20 (270 MHz); 13C-NMR Bruker WM-400 (400 MHz, FT-NMR) : Chemical shifts in δ value (ppm) with TMS as an internal standard.

Isolation of 1

Ground and dried stems were extracted with 95% EtOH. The extract was evaporated under reduced pressure. The concentrated gummy mass obtained was partitioned with hexane, C6H6, CHCl3, EtOAc and Me2CO. The concentrated EtOAc soluble fraction was chromatographed over Si-gel column using Me2CO-MeOH as eluant. The fractions collected from Me2CO-MeOH (9:1) gave compound 1, crystallized from MeOH as light yellow needles, which showed a single homogeneous spot on TLC over Si-gel (MeOH-H2O-AcOH 40:60:1).

m.p. 286-87 °C M* 590; analysed for C20HsO13 (% C-58.59, % H-5.76); UV λ maxMeOH 270, 347; λ NaOAc 282, 395; λ maxAlCl3 278, 389, 405; λ AlCl3+H2O 278, 389, 405; λ MaxNaOAc+CHCl3 272, 389, 405; λ MaxNaOAc+HCl 272, 389, 402; λ AlCl3+HCl 274, 390, 405; λ Max NaOAc 287, 344; λ MaxNaOAc+H2O 289, 350; IR : KBr max 3350 (OH), 1610 (α-β unsaturated C=O), 2825, 1320, 1230, 1105, 822 cm-1; 1H-NMR (270 MHz, CDCl3) δ ppm 1.34 (6H, br, s, 2CH3), 5.17 (1H, brt, J=7 Hz, =C=H-H), 3.67 (1H, m, C1'' ' 'Ha), 3.70 (1H, m, C1'' ' 'Hb), 3.98 (3Hs, OMe), 4.02 (3H, s, OMe), 3.82(3H, s, OMe), 7.77 (1H, d, J=2.5 Hz, H-2'), 7.50 (1H, d, J=2.5 Hz, H-6'), 6.87 (1H, s, H-8), 5.71 (1H, d, J = 7 Hz, C-1'' 'H'), 4.08-5.71 (7H, m), EIMS (m/e) (Mⁿ⁺ absent, 428 (M⁺ - sugar), 373(Aglycone-C₂H₃), 183 (A⁺+H) .155 (A⁺+H) -CO 204 (B₁'), 219 (B₁'), 398 (Aglycone–OCH₃), 270 (Aglycone –OCH₃CO), 13C-NMR: 163.60 (C-2), 134.62 (C-3), 182.10 (C-4), 152.55 (C-5), 131.34 (C-6), 160.52 (C-7), 94.52 (C-8), 157.30 (C-9), 106.90 (C-10), 121.42 (C-1'), 110.15 (C-2'), 104.82 (C-3'), 150.92 (C-4'), 147.92 (C-5'), 120.35 (C-6'), 23.2 (C-1'''), 123.8 (C-2''''), 131.32 (C-3'''), 26.7 (C-4''''), 19.8 (C-5'''), 101.92 (C-1'''), 74.20(C-2''), 76.50 (C-3''), 70.55 (C-4''), 76.60 (C-5'') 60.52 (C-6''), 60.94, 59.67, 60.87 (3OMe).

Acid hydrolysis of 1

A sample of 1 was refluxed with 7% H2SO₄ for 6 hours. Work up in the usual way afforded an aglycone la, crystallized from MeOH, yellowish, morphous powder, C₂₃H₁₉O₇, m.p. 171-72 M⁺ 428 (found : C, 64.47; H, 5.59 Calcd : C, 64.48; H, 5.60%); UV λ maxMeOH 270, 346; λ MaxMeOH 281, 394, 332; λ AlCl3 272, 390, 402; λ AlCl3+HCl 274, 390, 405; λ Max NaOAc 287, 344; λ MaxNaOAc+H₂O 289, 350; IR : KBr max 3350 (OH), 1610 (α-β unsaturated C=O), 2825, 1320, 1230, 1105, 822 cm-1; 1H-NMR (270 MHz, CDCl3) δ ppm 1.34 (6H, br, s, 2CH3), 5.12 (1H, br, t, J=7 Hz, H-2'), 5.12 (1H, br, t, J=7 Hz, H-2'), 3.65 (1H, m, -C1'' ' 'Ha), 3.69 (1H, m, -C1'' ' 'Hb), 3.90 (3H, s, OMe), 4.0 (3H, s, OMe), 3.84 (3H, s, OMe), 7.75 (1H, d, J=2.5 Hz, H-2'), 7.50 (1H, d, J=2.5 Hz, H-6'), 6.82 (1H, s, H-8) , 12.15, 11.45 .9.80 (3-OH groups, s) : Ms (m/e) : 428 (M⁺), 373 (M⁺ - C₂H₃), 183 (A⁺+H), 155 (A⁺+H-CO₂), 216 (B₁'''), 219(B₁'''').
The aqueous layer was worked up for the identification of sugar and on PC examination in BAW (n-Butanol: Acetic acid: Water 4: 1: 5) showed the presence of D – glucose (PC and Co-PC).

Permethylation of 1

A sample of I was treated with MeI and Ag$_2$O in dimethyl formamide and left for two days at room temperature. On usual Work up it gave none methyl ether, dark yellow needle m.p. 152-53°C M$_r^*$ 674 (Found: C, 62. 27) H. 6.78; Calcd: C. 62. 31; H, 6.82%.

Enzymatic hydrolysis of 1

The compound I was dissolved in EtOH and mixed with Almond Emulsion and left for 72 hours and filtered. The aglycone and hydrolysate were examined separately. Aglycone C$_{29}$H$_{32}$O$_5$ m.p. 171-72°C M$_r^*$ 428. The hydrolysate on concentration was examined for sugar moiety by PC using whatman No. 1 and 3 (n-Butanol-Acetic acid – water 4: 1: 5). The sugar was identified as D-glucose with authentic sample.

Periodate oxidation of 1

The glycoside I was dissolved in MeOH and treated with sodium Meta periodate (0. 1 N). It consumes 2.02 moles of periodate and liberated 1.08 moles of formic acid suggested that D-glucose was present in pyranose form.

Cyclisation

Reaction of I on refluxing with 98% HCOOH acid yielded a chromane derivative 1b (M$_r^*$ = 590).

III. Result and discussion

The compound I was isolated as light yellow needles, m.p. 286-87°C M$_r^*$ 590 and analysed for C$_{29}$H$_{32}$O$_5$; It gave positive Molish test, reduces tollens reagent, FeCl$_3$ test and colour reactions of flavonoids (8, 9). The IR spectrum of the I showed the absorption bands at 3455 (OH) ,1658 (α – β unsaturated C=O) , 1535 (C=C), 2835 (-OCH$_3$) , 830, 1015 (C=O). The UV spectrum showed absorption maxima at 270 and 347 nm and changes in the presence of diagnostic shift reagents (10) suggested free hydroxyl groups at C-4’, C-5 positions with blocked C-7 and C-3 positions.

The 1H-NMR spectrum of I showed a set of signals that could be attributed as side chain of prenyl group \(-\text{CH}_2 - \text{CH} = C\text{H}_3\). Two one-proton multiplets at δ 3.67 and 3.70, a one–proton broad triplet at δ 5.17 (J=7Hz) and a singlet integrating for 6H protons at δ 1.34 assigned the presence of prenyl group. The aromatic B-ring signals at δ 7.77 (1H, d, J=2.5 Hz, H-2’) and 7.50 (1H, d, J=2.5 Hz, H-6’) (two meta-coupled doublets deshielded by C=O) were assigned to H-2’ and H-6’ respectively. The presence of three methoxyl groups were confirmed by shift at δ 3.98, 4.02 and 3.82 appearing as singlets, A singlet at δ 6.87 for one proton intensity was assigned to H-8. Two sharp and board singlets at δ 12.35 and 11.06 each for one proton were assigned protons of 5-0H and 4 ‘–OH respectively. The spectrum of I also revealed the sugar protons at δ 5.71 as doublet (J=7.5 Hz) assigned to H-1 of glucose (B-configuration), 13C-NMR sectrum of I revealed the presence of 29 carbon atoms in it and agreed with the structure of glycoside as I.

The EI mass spectrum of I was in full agreement with the assigned structure, The molecular ion peak as expected was not observed, The MS showed a fragment ion at m/z 428 which corresponds to the loss of monosaccharide from the molecular ion . The4 loss of Isobutylenyl radical from aglycone gave fragment at m/z 378. A Retro Diel’ s Alder fragmentation was observed at m/z 183 and m/z 204 leading to [A$^+$ + H] and [B$^+$] fragments which indicated the presence of two hydroxyl and one methoxy in ring A and B prenyl group at C-3’ in ring B of the aglycone. Compd, I gave single chromane derivative 1b [M* = 590], thus confirming that prenyl group was neighboured by a single hydroxy group. Acid hydrolysis of the I with 7% HCl gave D-glucose (PC and GLC) and a aglycone C$_{29}$H$_{32}$O$_5$ m.p.171-172°C M$_r^*$ 428. The aglycone gave a bathochromic shift of 17 nm in Band II with NaOAc indicating that the sugar was linked to C-7 position of the aglycone. Aglycone was identified as 7, 5, 4– trihydroxy, 3′-prenyl, 3, 5’, 6-trimethoxy flavone by its UV, IR, 1H-NMR spectral analysis, Kuhn methylation (MeI/DMF/Ag$_2$O) of I followed by acide hydrolysis yielded 2, 3, 4, 6-tetra-o-methyl-D- glucose confirmed that the sugar was attached via its C1 –OH to the C-7-OH of the aglycone. 1 on enzymatic hydrolysis with Almond emulsion (11) indicated β- linkage between the sugar and aglycone the sugar was confirmed as D-Glucose (by PC and Co-TC). The sodium Meta periodate oxidation (12) of the I indicated that sugar was in the pyranose form. Thus the compound I is a chromane derivative known as 3, 4’- dihydroxy, 3′ – (3′′ -methyl , but-2″ - enyl) ,3,5’,6 – trimethoxy flavone 7-O β-D-glucopyranoside.

Acknowledgement

Thanks are due to Central Drugs Research Institute, Lucknow, for recording various spectra and Dr. V.K. Saxena, Department of Chemistry, Dr, H.S. Gour, University, Sagar, for providing Laboratory Facilities.

References

[1]. Wealth of India “A dictionary of row materials and industrial products” (1950) C.S.I.R. publication, New Delhi, India, 11, p. 190,

