Design and Simulation of Bidirectional In-Plane Chevron Beam Microtweezer

Neha Jain[1], Anurekha Sharma[2], Sandeep Kumar[3]

[1],[3] Department of Electronics and Communication Engineering, SDDIET, Panchkula, India

Abstract: This paper presents the modified design of a bidirectional electrothermal chevron beam microtweezer proposed by J. K. Luo [1]. The original design has been modified to include inward in-plane motion. Thus, the modified design is capable of bidirectional motion. The structures are designed and simulated using COMSOL Multiphysics 4.2a. The bidirectional chevron beam microtweezer shows an in-plane displacement of 2.192µm outward and 0.6178µm inward and an out-of-plane displacement of 2.1594×10^{-8} m for an applied voltage of 4V. The effect of number of beams, length of beams and residual stress on the deflection of the chevron beam microtweezer has also been studied. A comparison between calculated and simulated results has been shown for the displacement of the actuator and both of them are in agreement with each other.

Keywords: MEMS, Actuators, Electrothermal, Chevron, Bidirectional, Microtweezer.

I. Introduction

MEMS refers to the term Micro Electro Mechanical System. MEMS consists of mechanical structures, microsensors, microactuators and microelectronics. Microactuators convert electrical input to mechanical form [2]. Application of MEMS exist in biomedical and biological fields, diagnostics, drug delivery, tissue engineering, microassembly of microelectronics, information technology etc [1]. Popular drive mechanisms for actuation are piezoelectric, electrostatic, shape memory and electrothermal. Electrostatic materials have the disadvantage that they cannot produce large displacement and force. Piezoelectric actuators require high voltages of up to hundreds of volts, hence unsuitable for biological applications. SM (shape memory) based actuators are inefficient in their working [1]. Electrothermal actuators have the advantage that they can produce large displacement and forces but at the cost of higher power consumption [3]. Electrothermal actuators are based on Joule heating. An electrothermal actuator can be U-beam or V-beam actuator. U-beam actuator is based on non-uniform joule heating while a V-beam actuator is based on uniform heating and expansion of the beams. A bent beam thermal actuator uses its shape to enhance the thermal expansion of its beams. Heat required for actuation is generated by electrical resistive heating [4]. A bent chevron beam actuator provides a scalable force along with displacement confined in one dimension [5]. The performance of a conventional chevron actuator is limited by high temperature expansion of the beams that is confined near the shuttle. It is degraded by the thermal expansion of the long shuttle that connects the apexes of the beam [5]. Applications of actuators are optical modulators, RF and optical switches, micromanipulators etc.

Many authors have done in the field of chevron beam actuators viz-a-viz Alex Man Ho Kwan et.al [5] proposed two design approaches to improve the performance of electrothermal in-plane micro actuator with chevron beams. They tried to improve the performance of actuator by improving Figure of Merit which is defined as the product of actuation displacement and force. Ehab Rawashdeh et.al [4] discussed the design and performance of a kink actuator which is a modified form of the bent-beam actuator. The main difference between kink and chevron actuators is that chevron actuators consist mainly of a straight arm which has a small portion of length that is bent. M.S. Suen et.al [6] proposed a method to optimize the stress concentration and fillet radius of the electrothermal V-beam microactuators. The main objective of this study was to get a relationship between aspect ratio and fillet radius to improve stress concentration. J. K. Luo et.al [1] discussed thermal actuator based micro tweezers with three different driving configurations. Out of three designs, type2 has the highest tip opening onwards which is based on chevron beam structure. This work presents a modified design of type 2 structure with an objective of providing bidirectional displacement.

II. Design concepts

Consider a conductor with a potential difference V applied across its ends causing a current I to flow through it, then its resistance and potential V are related as

$$V = IR$$ \hspace{1cm} (2.1)

The power loss (rate of energy loss per unit time) in a resistor appears in the form of thermal energy and is given by
This power is also known as ohmic heating or Joule heating. Power results in heating of the structure which causes thermal expansion according to the equation 2.3.

\[\Delta L = \alpha E L \Delta T \]

where, \(\alpha_e \) = Thermal expansion coefficient
\(\Delta T \) = Temperature difference

Figure 2.1: Chevron beam actuator

This elongation in the beam produces deflection of chevron beam actuator is given by equation 2.4 [7]:

\[\text{Def}_{\text{chev}} = [L^2 + 2L(\Delta L) - L^2 \cos^2(\alpha)]^{1/2} - L \sin(\alpha) \]

where,

- \(L \) = Length of single beam
- \(\alpha \) = Pre-bending angle
- \(\Delta L \) = Elongation of the beam due to thermal expansion [3], where \(\Delta L \) is given by equation 2.3

Stiffness of the shuttle with \(N \) number of beams is given by the following equation [8]:

\[k_{chev} = \frac{N192EI}{(2L)^3} \]

where,

- \(N \) = Number of beams
- \(E \) = Young’s modulus
- \(L \) = Length of beam
- \(I \) = Moment of Inertia, which is given by [9]

\[I = tw^3/12 \]

where,

- \(t \) = Thickness of beam in \(\mu m \)
- \(w \) = Width of the beam in \(\mu m \)

III. Design and Simulation

The original structure [1] given in figure 3.1 shows an outward deflection. This structure consists of chevron beam and inverted chevron beam design. The motion of the shuttle pushes the inverted chevron structure upward and deflects the arms of the microtweezer outwards.

Figure 3.1: Original design
Figure 3.2: Proposed design for bidirectional motion

The design in fig. 3.1 is modified as shown in fig. 3.2 to provide bidirectional motion of microtweezer. This structure consists of two inward chevron beam structures and one chevron beam structure which shows an inward deflection when voltage is applied across contact pad 1 and it shows an outward deflection when voltage is applied across contact pad 2. Contact pad 3 is provided with the potential in both the cases.

A. Simulation results

The structure given in figure 3.2 was designed and simulated in COMSOL 4.2a. The main beam and chevron beam structures are made of polysilicon while the contact pads are made of copper. The material properties of both the materials are given in table 3.1.
<table>
<thead>
<tr>
<th>Property</th>
<th>Polysilicon</th>
<th>Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical conductivity (σ) in S/m</td>
<td>0.25×10^5</td>
<td>58.1×10^5</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (α) in 1/K</td>
<td>2.61×10^{-6}</td>
<td>16.5×10^{-6}</td>
</tr>
<tr>
<td>Heat capacity at constant pressure (C_p) in J/kg*K</td>
<td>678</td>
<td>384</td>
</tr>
<tr>
<td>Density (ρ) in kg/m3</td>
<td>2320</td>
<td>8960</td>
</tr>
<tr>
<td>Thermal conductivity (k) in W/m*K</td>
<td>34</td>
<td>401</td>
</tr>
<tr>
<td>Relative permittivity (ϵ_r)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Young’s Modulus (E) in GPa</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td>Poisson’s ratio (μ)</td>
<td>0.22</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Geometrical dimensions of proposed design are shown in table 3.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of anchors</td>
<td>50µm</td>
</tr>
<tr>
<td>Width of anchors</td>
<td>50µm</td>
</tr>
<tr>
<td>Length of chevron beam</td>
<td>130µm</td>
</tr>
<tr>
<td>Width of chevron beam</td>
<td>5µm</td>
</tr>
<tr>
<td>Length of inverted chevron</td>
<td>50µm</td>
</tr>
<tr>
<td>Width of inverted chevron</td>
<td>4µm</td>
</tr>
<tr>
<td>Length of main beam</td>
<td>900µm</td>
</tr>
<tr>
<td>Width of main beam</td>
<td>10µm</td>
</tr>
<tr>
<td>Tilt angles</td>
<td>5.71°</td>
</tr>
<tr>
<td>Length of the shuttle</td>
<td>190µm</td>
</tr>
<tr>
<td>Gap between chevron beams</td>
<td>25µm</td>
</tr>
<tr>
<td>Gap between inverted chevron</td>
<td>10µm</td>
</tr>
</tbody>
</table>

Figure 3.3 and 3.4 shows displacement distributions for a bidirectional microtweezer which shows both inward and outward displacement in a single structure. This is because this structure consists of both chevron beams and inverted chevron beams in its design which can displace the tweezer in either direction based on to which contact pads the voltage is applied. When a potential of 4V is applied across contact pad1 it shows an inward displacement and when this voltage is applied across contact pad2 it shows an outward displacement.

![Figure 3.3: Bidirectional microtweezer with inward displacement](image)

![Figure 3.4: Bidirectional microtweezer with outward displacement](image)

Figure 3.5 and 3.6 shows the temperature distribution for bidirectional microtweezer. In this figure structure reaches maximum temperature of 881K at an applied voltage of 4V while temperature at tips is approximately at room temperature.
Figure 3.5: Temperature distribution for inward deflection

Figure 3.6: Temperature distribution for outward deflection

Figure 3.7 shows variation of displacement with applied voltage for inward and outward deflection.

Figure 3.7: Voltage Vs displacement

Figure 3.8 shows variation in temperature on shuttle with applied voltage.

Figure 3.8: Voltage Vs temperature

Variation of displacement with number of beams

Figure 3.9 shows that as the number of beams increases displacement also increases up to five beams. After that it almost saturates. This trend follows irrespective of change in length.
Figure 3.10 shows the variation in stiffness with number of beams. Figure 3.10 shows that upon increasing the number of beams for a chevron beam actuator, stiffness of the beam also increases. This stiffness accounts for the limitation in increase in displacement with the increase in number of beams. Residual stresses are introduced in the structures when thin films are deposited at an elevated temperature. This can be compressive stress or tensile stress. In the present design we are using polysilicon as the material, therefore stress induced here is compressive stress. As the compressive stress increases structure becomes flexible. Hence displacement increases on increasing compressive stress. Figure 3.11 shows effect of compressive residual stress on displacement.

IV. Results and Discussions

Figure 3.11 shows that as the compressive residual stress increases, the displacement of the microtweezer also increases. In this work, for a compressive stress in the range 150MPa to 350MPa displacement is increased from 0.3067µm to 2.156µm.

Simulated versus calculated results for chevron beam actuator are shown in figure 4.1. It can be observed that both the results are in agreement with each other.
For fixed voltage, height and material properties, the displacement is proportional to the square of the beam length. This is given by equation 4.1 [10]:

\[\mu = \beta \alpha L^2 V^2 / 3kpd \]

Figure 4.1: Simulated Vs calculated results

V. Conclusion

This paper presents the design and simulation of a bidirectional chevron beam microtweezer. The presented design shows an out-of-plane displacement of 2.1594×10^-8m which is very less as compared to in-plane inward and outward displacement of 2.192µm and 0.6178µm respectively for applied voltage of 4V. Effect of compressive residual stress is also studied on displacement and it is found that as the compressive residual stress increases displacement also increases. Effect of stiffness is studied which indicates that number of beams of the actuator is limited to five in this case.

Acknowledgement

One of the authors acknowledges the support of Dr. Dinesh Kumar, Dr. B. Prasad and Dr. Manish Hooda in allowing her to use the design tools in NPMASS MEMS Design Centre, Electronic Science Department, Kurukshetra University, Kurukshetra.

REFERENCES