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Abstract: The boundary value problem with relations of the theory of flow with nonlinear hardening in 

derivatives stress and strain tensors in the parameter loading is formulated to estimate local mechanical 

properties in the vicinity of the crack tip of mode I loading for the plane stress state of the elastic-plastic 

material at the stage of quasi-static growth. Complete solutions are obtained by the method of asymptotic 

decompositions. The redistribution of stress and strain fields in the plastic region at a quasi-static growing 

crack for the intermediate structure is investigated. The form of the plastic zones was found. Direct estimates of 

the errors were obtained.  
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Cracks significantly affect the structural strength of the material. At the same time, the distribution of strain and 

stress fields near the propagating crack considerably changes compared with a fixed crack in the theory of 

plasticity. Therefore, to obtain adequate estimates of the stress- strain state in the vicinity of singular points of 

the boundary, including the tip of the crack at various modes of crack growth is crucial for solving boundary 

value problems of nonlinear fracture mechanics. In the vicinity of the crack tip in such materials there are plastic 

zones, the boundaries of which have a complex shape and form [1]. Moreover, experimental data about the 

presence of the area of stable (slow) crack growth under monotonic loading, as well as repeated (cyclic) loads 

[2,3]. As are known for the features of the first type there have been two ways to account for the plastic 

properties of the material. One of them is the solution of elastoplastic problems for a hardening body with a 

crack, where, during the solution the boundary, separating the elastic and plastic zones is determined besides the 

definition of emerging stress and strain fields [4]. This way is associated with considerable mathematical 

difficulties, because of the need to formulate the boundary value problem in the incremental theory of plasticity, 

taking into account the fact, that the mapping of a plastic zone on a plane stress is not degenerated and it is 

necessary to search for corresponding representations of the solutions, defined both in the elastic and plastic 

zones, with their subsequent gluing along the line separating areas of active loading and unloading. To account 

for the characteristics of the second type requires the consideration of various modes of crack propagation, such 

as quasi-static or dynamic nonstationary and stationary growth. 

At the same time, finding exact or approximate solutions in the problems of stress concentrators such as cracks 

is complicated because of the singularity of stress and strain fields at a singular boundary point and non-linearity 

and nonholonomicity of resolving equations. The development of asymptotic methods, occupying an 

intermediate position between the exact analytical approaches, used in the linear fracture mechanics [5], and 

direct numerical methods for nonlinear problems [6], is a topical problem. 

One of the variants of the method of asymptotic decompositions, used in the problems for elastic-plastic 

hardening material is the method, connected with finding the hyperfine structure – the main term of the 

asymptotic of stress and strain [7]. The latter allows to get the values of the local characteristics of the stress 

state for an infinitely small vicinity of the crack tip, but does not give the values of those at the final (although, 

perhaps, small) distances and errors, occurring in these situations. The study of the asymptotics of intermediate 

structure levels is of considerable interest for their combined use with the fracture criteria and the construction 

of efficient algorithms for the analysis of complete solutions while taking into account the unloading in the case 

of elastoplastic material with hardening. For the construction of approximate solutions at stresses we applied the 

method of the asymptotic decompositions, when in the vicinity of the singular point complete series of stresses 

and strains, including along with the main part the correct one, are considered [8]. The accuracy of solutions is 

characterized by the direct estimates of the errors of stress and strain for the finite increments of the crack 

length, taking into account the next terms of the series. The above method allows, in particular, to determine the 

geometry of small plastic zones.  

The definition of stress and strain fields near the fixed crack-like defects in elastic-plastic bodies is an important 

part of the problem of estimating the strength of structural elements. Experiment, show that the crack remains 

fixed for sufficiently small values of a monotonically varying loading parameter (for example, for the values of 

the stress intensity factor cKK   – fracture toughness for quasibrittle fracture) [1]. This stage can contain the 

subcritical growth mode, when the stress-strain state, typical of a small vicinity of the tip of a fixed cut, is 
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realized in the smooth growth of cracks at a sufficiently large distance from the singular point and has the 

meaning of to some intermediate asymptotics of the full elastic-plastic solution. 

Further, under the conditions, providing a sustainable growth, the stages of a rapid crack propagation in elastic-

plastic body can take turns with the areas of braking and stop or slow propagation, which makes necessary the 

formulation of the problem. 

I. Formulation of the problem  

Let’s consider a stationary mode of crack propagation, where the stress and strain fields do not depend explicitly 

on the loading parameter. The case of elastoplasticity is distinguished by the presence of the initial stage of 

crack propagation in subcritical growth. We apply the variant of  asymptotic decomposition method for loading 

parameters for evaluating the stress-strain state near the crack tip. The elastoplastic, incompressible material 

with a hardening power law is considered. Cartesian coordinate system is applied to the end of the crack. 

System axes  2,1ii  are located in such a way that 1  is oriented along the crack in the direction of its end. 

We assume that the state near the tip is controlled by the load parameter K p l , here  p - tension at infinity, 

2 - length of crack in a plate, which will be interpreted as the stress intensity factor in the elastic region, 

surrounding the zone of plastic deformation. The only independent parameter of the problem with the 

dimensions of length is the value of 22 /GК , where G – shear modulus, that’s why the required functions of the 

problem depend on the load only through the dimensionless variables 

(2.1)    
1

22
2

2
1

22 ;,2,1/
x

x
arctgxxriKGx ii   . 

 (O, ,r ) is the mobile polar coordinate system with the pole at the end of the crack, 2/r  being a 

dimensionless radius – the ratio of the radius vector of the point to the length of the crack 2 ; The crack tip is 

moved along with the associated coordinate system ),,( 111 RO  at the subcritical growth.  

Unlike the Cartesian coordinate system, where the orientation of the area, on which the changes of stress are 
considered, remains fixed and the coordinates of the normal vector to this area do not change, when the origin 
together with the crack tip move, coordinates of the normal fixed-area change, when you move the pole O  to the 

point 
1O  in the case of the polar coordinate system, that is they are a function of the crack length (fig. 1).  

Figure 1  The movable polar coordinate system 

 
This fact must be taken into account when choosing stress and displacement representations, when the function

),,( rlf  implicitly depends on the crack length, and its derivative is represented by 

(2.2)    
r

f

r

f
llrf

)sin(
)cos())(),((


















. 

The length derivative of strains (speed) in the polar coordinate system is understood as follows: 
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Elastoplastic, incompressible material with a quadratic hardening law under a uniform load at the infinity is 

considered. The strain and stress tensors and deviators components under the plane stress conditions in the polar 

coordinate system can be expressed by: 
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In addition, it is necessary to include the equation in the length derivatives of the strain 
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and, writing the constitutive equations of the flow theory with isotropic hardening, taking into account 

availability of the zone of active loading and the unloading zone, in derivatives with respect to the crack length: 
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A
TF   – the function of the shear stress intensity, A3 = 2A2, hereA2 — 

material constant, characterizing the non-linearity of the deformation diagram, determined, for 

example, from the experience of a simple stretching. 
The boundary value problem is formulated under the condition, that the crack surfaces are free from effort: 
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where ij  − dimensionless stress components, related to the shear modulus G . 

  

II. Numerical-analytical solution 

Let’s introduce the stress function ),( r  as a full decomposition on power parameter in the vicinity of the 

singular point, 

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 ,  r  and   being the functions of the crack length. The values  k  and 

)( k  are expected to be determined while solving the problem. 

Then the expressions for the stress, the function of  hardening  and the stress and strain derivatives of length for 

the field of active loading are as follows: 
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Thus we have a recurrent sequence of boundary value problems on the eigenvalues for any approximation of the 

equation 
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The boundary conditions (2.7) will take the form: 

(3.6)   0|  n , 0|   n , 0| 0 n , 0| 0  n , 0|   n . 

Asymptotic problem solution of hard concentrators such as cracks include some degree of arbitrariness. In the 

case of linear analysis of the stress-strain state the corresponding uncertainty arises due to the stress intensity 

factor with the geometry of the solid and the boundary conditions [1]. In the elastic-plastic materials a similar 

situation appears while considering the hyperfine structure, when the main term in the expansion near the point 

of singular - the crack tip contains along with an undetermined factor the previously unknown parameter (the 

degree of singularity). At the same time for sufficiently long cracks and small plastic zones there may also exist 

an asymptotic solution of the level of the fine structure. The degree of uncertainly in the case of propagation is 

even more profound – the number of characteristic asymptotic parameters may increase up to three. The energy 

invariants of the type J-integral Cherepanov-Rice are used to resolve this arbitrariness. In addition, in elastic-

plastic problems there arise the inconsistency of solutions with energy criteria of the crack growth, since the 

energy flow into the tip of a growing crack is not sufficient to compensate the energy for the formation of new 

crack surfaces.  

The value 0  is determined from the invariance of the J-integrals, for each the integration is along the contour 

  surrounding the crack tip [9] 












l

dunnuulE xijijxixi ))
2

1
((

111 ,1,,
2 , 

here E – strain energy,  - potential energy, jijn - vector of efforts on   by the normal vector in the positive 

direction ),( 21 nnn  , iu - displacements, 


l  - the speed of propagation of the crack tip,  - material  constant. 

First, we find  the value of the parameter 0 , corresponding to the nontrivial solution, and the  function 0  in 

the interval   ;0 . Some additional conditions must be carried out for the solving these problems. These 

conditions occur because the functions  klma  depend on   n  with the indexes 

   mlknmlk ,,max,,min  .Then 01 4   , 02 38   . In general, this condition has the form 

 ...2,1,0,173  nnmkmlkn  , whence 0)12(4   nnn , ( ...2,1n ). 

We have a recurrent sequence of a boundary value problems for systems of differential equations of fourth 

order. At the initial stage, this is problem on eigenfunctions of nonlinear homogeneous differential operator, and 

the next stages - linear problems for nonhomogeneous differential operator. The boundary problem is solved 

numerically using the modified shooting method. 

The following notations while solving the boundary value problem has been introduced: 
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0
)4(

0000 04,03,02,01,00   fffff , and obtain an equivalent system of differential 

equations with five boundary conditions. 

(3.7)  )04,03,02,01,00(40,0430,0320,0210,0100 fffffffffffffff  . 

(3.8)   0|00 f , 0|01 f , 0|00 0f , 0|01 0f , 0|02 f . 

III. The analysis of the results   

The calculations are made for copper alloy with the following material constants:  

G=0.424·1011N/m², hardening modulus M=1000МPa, the Poisson coefficient ν=0.365. These obtained graphs 

correspond to the case P=300МPa, elastoplastic material constant A2 = 1.3270501·10
-5

. The obtained value 

of the parameter 3/50  . Using this 0 , it is possible to get a continuously splicing zones of active loading 

and unloading. 

The graphs of the related components of the stress and stain tensor of the intermediate structure (Fig. 2) are 

given for dl=1·10
-7

 depending on the angle φ for mode I crack (Notations on the graph: 1 – σrr(φ), 2 – σφφ(φ), 3 – 

σrφ(φ), 1 – εrr(φ), 2 – εφφ(φ), 3 – εrφ(φ)).  

 

Figure 2 Graphs of the component dependence of stresses and strains tensors on the angle for 
5101 r  

 
The contours of the stress distribution (Fig. 3) and strain (Fig. 4) in the region of the intermediate structure are 

represented. From the graph analysis, we conclude that for the case of the plane strain and stress component, 

  has a maximum value in the direction of the supposed development of the crack. Besides, the stress 

concentration occurs near the crack, and a smoothed decrease of the distance from it in comparison with the 

deformation theory of plasticity [10]. 

Figure 3 Contour plots of the stresses σrr, σφφ, σrφ  in the vicinity of the crack tip 

  
Figure 4 Contour plots of the strains εrr, εφφ, εrφ in the vicinity of the crack tip 

 
It should be noted that, with increasing external load we have a sharp expansion of the plastic region. The area 

of plastic deformation, including the zone of active loading and unloading, is shown in Fig. 5. The area 

degenerates into a circular sector, limited by the diameter of the intermediate structure and the critical value of 

the angle at which unloading takes place. 
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Figure 5 The boundaries of the plastic zone in the region of the intermediate structure 

 
Table 1 shows the values of the angle of the boundary between the zones of active loading and unloading. 

Table 1. The critical value of the angle 
r   for the unloading area, at an external effort P=300МPa  

r (m) 0.3·10-5 0.5·10-5 0.7·10-5 0.9·10-5 1.1·10-5 1.3·10-5 

r  

0.823573 0.767061 0.710548 0.647756 0.581825 0.503335 

The tables below show the relative quantities of each of the approximations in general asymptotics. In general, 

the values are for σrr(φ)  from 2% to 7% for the first approximation, from 0,05% to 0,6% for the second 

approximation. For σrφ: from 1% to 8%– for the first approximation and from 0,1% to 1% – for the second 

approximation. For σφφ: from 2% to 8% – for the first and from 0,01% to 1% – for the second approximation.  

 

Тable 2.  The direct estimation of convergence for σrr(φ) 
r(m) 0.3·10-5 0.5·10-5 0.7·10-5 0.9·10-5 1.1·10-5 1.3·10-5 

the zero approximation 0.98031 0.96787 0.95559 0.94309 0.93070 0.91835 

the first approximation 0.01923 0.03108 0.04253 0.05388 0.06488 0.07558 

the second approximation 0.00046 0.00105 0.00188 0.00304 0.00444 0.00609 

norm of the three approximations 2.30377 1.81736 1.59099 1.44935 1.35390 1.29699 

 

Тable 3.  The direct estimation of convergence for σrφ 
r(m) 0.3·10-5 0.5·10-5 0.7·10-5 0.9·10-5 1.1·10-5 1.3·10-5 

the zero approximation 0.99440 0.98676 0.97596 0.96046 0.94002 0.91257 

the first approximation 0.01033 0.01929 0.02991 0.04294 0.05900 0.07995 

the second approximation 0.00190 0.00255 0.00287 0.00415 0.00727 0.01201 

norm of the three approximations 0.20304 0.14355 0.11055 0.08188 0.06371 0.04503 

 

Тable 4. The direct estimation of convergence for σφφ 
r(m) 0.3·10-5 0.5·10-5 0.7·10-5 0.9·10-5 1.1·10-5 1.3·10-5 

the zero approximation 0.98179 0.96676 0.95188 0.93733 0.92325 0.90930 

the first approximation 0.01824 0.03238 0.04583 0.05849 0.07034 0.08157 

the second approximation 0.00019 0.00091 0.00234 0.00418 0.00642 0.00913 

norm of the three approximations 1.16081 0.95609 0.83888 0.76592 0.72988 0.69238 

 

The form of the plastic zones, taking into account the evolution of unloading process of the fracture has been 

found. One can conclude that there is a reduction of the order of singularity stress and strain fields of the main 

term within the boundaries of the intermediate structure.  

Their local geometry depends greatly on the choice of the defining relations and a steady-state modes of 

stationary in comparison with the deformation theory. In [11], suggesting that the stress-strain state, prior to the 

breakaway of crack is reached under loading conditions, close to the radial, the stresses in the plastic region at 

this moment along the linearity of the asymptotic of material chart were determined according to the formulas of 

the deformation theory, which does not allow to this technique to the materials with a non-linear diagram of 

straining, when the linear portion is absent. At the same time, due to disproportionality of the loading process 

with the breakaway crack the redistribution of the stress and strain requires of their finding within a 

nonholonomic flow theory. Comparative analysis showed significant relative differences in the zone structure of 

the active loading and unloading – the reducing of the areas of an active loading compared with the deformation 

theory and no discharge areas near the edges of the  crack. The order singularity component of the main term is 

reduced, resulting in a more uniform distribution of stress fields within the boundaries of the intermediate 

structure in the vicinity of the crack tip. 

IV. Concluding remarks 

The obtained results allow us to formulate the following conclusions. We have found an asymptotic solution of 

the boundary elastic-plastic problem of the propagating crack. An iterative process, in which an initial 

approximation is considered as the solution of the eigenvalue problem of the nonlinear differential operator, has 
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been constructed. From the condition of the finiteness J-integral the order of the singularity was numerically-

analytically obtained. It is necessary to take into account the singularity of the displacement gradients and 

stresses distributed along the crack edges, as well as the concept of potential deformations for materials 

described by nonintegrable differential equations. At the subsequent stages of the algorithm, recurrent 

representations for the eigenvalues are determined. The estimation accuracy of the solution is given. On the 

basis of these solutions obtained, we conclude that the direction in which the maximum values of the stress 

intensity and strain intensity are reached may not coincide. The account of the stress state for the elastic-plastic 

materials leads to reducing the of the critical stress at which the crack growth occurs. 
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