A Common Fixed point Theorem for Three Self-Mappings in Cone Metric Space

Ashfaque Ur Rahman1*, K. Qureshi2, Geeta Modi3

1,3Department of Mathematics, Motilal Vidyamahavidyalya, Bhopal, Madhya Pradesh, India- 462016
2Department of Higher Education, Government of Madhya Pradesh, India – 462004
*Corresponding author

Abstract: The aim of this paper is to prove a coincidence and common fixed point theorem of three self-mappings satisfying contractive type condition (A) in cone metric space.

Keywords: Coincidence point, common fixed point, condition (A).
Mathematics Subject Classification: 47H10, 54H25, 55M20.

I. Introduction and Preliminaries

Huang & Zhang [2] familiarized the idea of cone metric space and prove some fixed point theorems for contractive type mappings in a normal cone metric space. Subsequently, some other authors [1, 3 to 6] studied the existence of fixed points of self-mappings satisfying a contractive type condition. Here, we obtain points of coincidence and common fixed points for three self-mappings satisfying condition (A) in a complete cone metric space.

Definition 1.1 (see [1]): A subset P of a real Banach space E is called a cone if it has the following properties:

1. P is non-empty, closed and $P \neq \{0\}$
2. $0 \leq a, b \in \mathbb{R}$ and $u, v \in P \Rightarrow au + bv \in P$;
3. $u \in P$ and $-u \in P \Rightarrow u = 0 \Leftrightarrow P \cap (-P) = \{0\}$.

Definition 1.2 (see [1]): For a given cone $P \subseteq E$, we can define a partial ordering \leq on E with respect to P by $u \leq v$ if and only if $u - v \in P$. We shall write $u < v$ if $u \leq v$ while $u \ll v$ stands for $v - u \in P^0$ where P^0 denotes the interior of P. The cone P is said normal if for some $K > 0$ for all $u, v \in E$,

$$0 \leq u \leq v \Rightarrow \|u\| \leq K\|v\|$$

(1.1)

The least positive number K satisfying (1.1) is called the normal constant of P.

In the following, we always suppose that E is a real Banach space and P is a cone in E with $\text{int}P \neq 0$ and \leq is a partial ordering with respect to P.

Proposition 1.3 (see [7]): Let P be a cone in a real Banach space E. If for $b \in P$ and $b \geq \alpha b$, for some $\alpha \in [0, 1)$ then $b = 0$.

Proposition 1.4 (see [7]): Let P be a cone in a real Banach space E with non-empty interior. If for $b \in E$ and $b \ll c$, for all $c \in P^0$, then $b = 0$.

Definition 1.5 (see [1]): Let X be a nonempty set. Suppose that the mapping $d: X \times X \to E$ satisfies

1. $0 \leq d(u, v), \forall u, v \in X$ and $d(u, v) = 0 \Leftrightarrow u = v$;
2. $d(u, v) = d(v, u), \forall u, v \in X$;
3. $d(u, v) \leq d(u, w) + d(w, v), \forall u, v, w \in X$.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 1.6 (see [1]): Let $X = \mathbb{R}^2$, $P = \{(u, v) \in X : u, v \geq 0\} \subset \mathbb{R}^2$, $d:X \times X \to E$ such that $d((u, v)) = (\|u - v\|, \alpha|u - v|)$, where $\alpha \geq 0$ is a constant. Then (X, d) is cone metric space.

Definition 1.7 (see [1]): Let $\{u_n\}$ be a sequence in X and $u \in X$. If for each $0 < c, \exists n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d(u_n, u) < c$, then $\{u_n\}$ is said to be convergent (or $\{u_n\}$ converges) to u and u is called the limit of $\{u_n\}$. We denote this by $\lim_{n \to \infty} u_n = u$ or $u_n \to u$ as $n \to \infty$. If for each $0 < c \exists n_0 \in \mathbb{N}$ such that for all $n, m > n_0$, $d(u_n, u_m) < c$, then $\{u_n\}$ is called a Cauchy sequence in X. If every Cauchy sequence is convergent in X, then X is called a complete cone metric space.

Definition 1.8 (see [1]): A pair (f, T) of self-mappings on X one said to be weakly compatible if they commute at their coincidence point i.e. $fTu = Tfu$ whenever $fu = Tu$.

Definition 1.9 (see [1]): A point $v \in X$ is called a point of coincidence of f and T if \exists a point $u \in X$ such that $v = fu = Tu$.

Condition (A): Let (X, d) be a cone metric space, P be a normal cone with normal constant K and $S, T, f : X \to X$ are three self-mappings. Then S, T, f are said to satisfy condition (A) if

$$d(Su, Tv) \leq ad(fv, Sw) \left| \frac{1 + d(fu, Tu)}{1 + d(fu, fu)} \right| + b[d(fu, Su) + d(fv, Tv)] + cd(fu, fv)$$

for $u, v \in X$ where $0 < a, b, c < 1$ with $a + 2b + c < 1$.

Proposition 1.10 (see [6]): Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If $u \leq v, v \leq w$ then $u \leq w$.

II. Main Results

Theorem 2.1: Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Suppose the mapping $S, T, f : X \to X$ satisfying condition (A). If $S(X) \cup T(X) \subseteq f(X)$ and $f(X)$ is a complete subspace of X, then S, T and f have a unique point of coincidence. Moreover, if (S, f) and (T, f) are weakly compatible, then S, T and f have a unique common fixed point.

Proof: Let u_0 be arbitrary point in X. Choose a point u_1 in X such that $fu_0 = Su_1$. Similarly, choose a point u_2 in X such that $fu_2 = Tu_1$. Continuing in this way choose u_k in X to obtain u_{k+1} in X such that

$$fu_{2k+1} = Su_{2k}, \quad fu_{2k+2} = Tu_{2k+1}, \quad (k \geq 0)$$

Then,

$$d(fu_{2k+1}, fu_{2k+2}) = d(Su_{2k}, Tu_{2k+1}) \leq ad(fu_{2k+1}, Su_{2k+1}) \left[\frac{1 + d(fu_{2k+1}, Tu_{2k+1})}{1 + d(fu_{2k+1}, fu_{2k+1})} \right]$$

$$+ b[d(fu_{2k}, Su_{2k}) + d(fu_{2k+1}, Tu_{2k+1})] + cd(fu_{2k}, fu_{2k+1})$$

$$\leq ad(fu_{2k+1}, fu_{2k+2}) \left[\frac{1 + d(fu_{2k+1}, fu_{2k+1})}{1 + d(fu_{2k}, fu_{2k+1})} \right]$$

$$+ b[d(fu_{2k}, fu_{2k+1}) + d(fu_{2k+1}, fu_{2k+1})] + cd(fu_{2k}, fu_{2k+1})$$

This \Rightarrow

$$d(fu_{2k+1}, fu_{2k+2}) \leq \left[\frac{b + c}{1 - (a + b)} \right] d(fu_{2k}, fu_{2k+1})$$

Similarly,
Now for positive integer \(n \) write
\[
\lambda f_{u_{2k+2}, f_{u_{2k+3}}} = d(S_{u_{2k+1}}, T_{u_{2k+2}}) \\
\leq d(f_{u_{2k+2}, S_{u_{2k+2}}}) \left[1 + d(f_{u_{2k+1}, T_{u_{2k+2}}}) \right]
\]
\[+ b [d(f_{u_{2k+1}, S_{u_{2k+1}}} + d(f_{u_{2k+2}, T_{u_{2k+2}}}) + cd(f_{u_{2k+1}}, f_{u_{2k+2}})
\leq d(f_{u_{2k+2}}, f_{u_{2k+3}}) \left[1 + d(f_{u_{2k+1}, f_{u_{2k+2}}}) \right]
\]
\[+ b [d(f_{u_{2k+1}}, f_{u_{2k+2}} + d(f_{u_{2k+2}}, f_{u_{2k+3}})] + cd(f_{u_{2k+1}}, f_{u_{2k+2}})
\]

This \(\Rightarrow \)

\[d(f_{u_{2k+2}}, f_{u_{2k+3}}) \leq \left[\frac{b+c}{1-(a+b)} \right] d(f_{u_{2k+1}}, f_{u_{2k+2}})
\]

Now by induction we arrive at

\[d(f_{u_{2k+3}}, f_{u_{2k+2}}) \leq \left[\frac{b+c}{1-(a+b)} \right]^2 d(f_{u_{2k}}, f_{u_{2k+1}})
\]
\[\leq \ldots \leq \left[\frac{b+c}{1-(a+b)} \right]^k d(f_{u_0}, f_{u_1})
\]

And

\[d(f_{u_{2k+2}}, f_{u_{2k+3}}) \leq \left[\frac{b+c}{1-(a+b)} \right]^2 d(f_{u_{2k+1}}, f_{u_{2k+2}})
\]
\[\leq \ldots \leq \left[\frac{b+c}{1-(a+b)} \right]^{k+1} d(f_{u_0}, f_{u_1})
\]

for each \(k \geq 0. \)

Let \(= \frac{b+c}{1-(a+b)}, \) then \(\lambda < 1. \)

Hence in general we can write
\[d(f_{u_k}, f_{u_{k+1}}) \leq \lambda^k d(f_{u_0}, f_{u_1})
\]

Now for positive integer \(p, \) we have
\[d(f_{u_k}, f_{u_{k+p}}) \leq d(f_{u_k}, f_{u_{k+1}}) + d(f_{u_{k+1}}, f_{u_{k+2}}) + \ldots + d(f_{u_{k+p-1}}, f_{u_{k+p}})
\]
\[\leq [\lambda^k + \lambda^{k+1} + \lambda^{k+2} + \ldots + \lambda^{k+p-1}] d(f_{u_0}, f_{u_1})
\]
\[\leq \lambda^k \left[\frac{1-\lambda^{1-p}}{1-\lambda} \right] d(f_{u_0}, f_{u_1})
\]
\[\leq \lambda^k \left[\frac{1}{1-\lambda} \right] d(f_{u_0}, f_{u_1})
\]

Now for \(c \in P^0, \exists \ r > 0 \) such that \(c - v \in P^0 \) if \(\|v\| < r. \) Choose a positive integer \(n_0 \) such that for all \(k \geq n_0, \left\| \lambda^k d(f_{u_0}, f_{u_1}) \right\| < r, \) which implies that,
\(c - \frac{\delta k}{1+\delta} d(f u_{2k}, f u_1) \in P^0 \) and \(\frac{\delta k}{1+\delta} d(f u_{2k}, f u_k) \in P^0 \)

\(k > N_0 \) and for all \(P \), by Proposition 1.10, \(d(f u_{2k}, f u_{k+1}) \ll c \) for all \(k > N_0 \) and for all \(P \). Hence \(\{ f u_k \} \) is a Cauchy sequence in \(f(X) \). Since \(f(X) \) is complete, there exist \(x, y \in X \) such that \(f u_k \to y = f x \).

Since

\[
d(f(x, Sx)) \leq d(f(x, f u_{2k})) + d(f u_{2k}, Sx)
\]

\[
\leq d(y, f u_{2k}) + d(T u_{2k-1}, Sx)
\]

\[
\leq d(y, f u_{2k}) + d(Sx, T u_{2k-1})
\]

\[
\leq d(y, f u_{2k}) + d(f u_{2k-1}, S u_{2k-1}) \left[\frac{1+d(f(x, T x))}{1+d(f(x, f u_{2k-1}))} \right]
\]

\[
+ b d(f(x, S x)) + d(f u_{2k-1}, T u_{2k-1}) + c d(f(x, f u_{2k-1}))
\]

\[
= d(y, f u_{2k}) + d(f u_{2k-1}, f u_{2k}) \left[\frac{1+d(f(x, T x))}{1+d(f(x, f u_{2k-1}))} \right]
\]

\[
+ b d(f(x, S x)) + d(f u_{2k-1}, f u_{2k}) + c d(f(x, f u_{2k-1}))
\]

This \(\Rightarrow \)

\[
d(f(x, Sx)) \leq \frac{1}{1-b} \left[d(y, f u_{2k}) + d(f u_{2k-1}, f u_{2k}) \left[\frac{1+d(f(x, T x))}{1+d(f(x, f u_{2k-1}))} \right]
\]

\[
+ b d(f u_{2k-1}, f u_{2k}) + c d(f(x, f u_{2k-1})) \right]
\]

Hence, it concludes that

\[
\|d(f(x, Sx))\| \leq \frac{K}{1-b} \left[d(y, f u_{2k}) + d(f u_{2k-1}, f u_{2k}) \left[\frac{1+d(f(x, T x))}{1+d(f(x, f u_{2k-1}))} \right]
\]

\[
+ b d(f u_{2k-1}, f u_{2k}) + c d(f(x, f u_{2k-1})) \right]
\]

where \(K \) is a normal constant. If \(n \to \infty \), then we arrive at \(\|d(f(x, Sx))\| = 0 \). Hence \(f x = Sx \).

Similarly by using the inequality

\[
d(f(x, T x)) \leq d(f(x, f u_{2k+1})) + d(f u_{2k+1}, T x)
\]

We can show that \(f x = T x \), implying that \(y \) is a common point of coincidence of \(S, T \) and \(f \); i.e. \(y = f x = Sx = T x \). Now we show that \(S, T \) and \(f \) have unique point of coincidence. For this, assume that there is another point \(y^* \) in \(X \) such that \(y^* = f x^* = S x^* = T x^* \) for some \(x^* \in X \). Now

\[
d(y, y^*) = d(S x^*, T x^*)
\]

\[
\leq d(f(x^*, S x^*)) \left[\frac{1+d(f(x, T x))}{1+d(f(x, f x^*))} \right] + b d(f(x, S x)) + d(f(x^*, T x^*)) + c d(f(x, f x^*))
\]

\[
= d(f(x^*, f x^*)) \left[\frac{1+d(f(x, T x))}{1+d(f(x, f x^*))} \right] + b d(f(x, f x)) + d(f(x^*, f x^*)) + c d(f(x, f x^*))
\]

The last inequality gives

\[
d(y, y^*) \leq c d(y, y^*)
\]

This is possible only when \(y = y^* \).

If \((S, f) \) and \((T, f) \) are weakly compatible, then
\[S_y = Sfx = fSx = fy \quad \text{and} \quad T_y = Tf x = fT x = fy \]

It implies that \(S_y = T_y = fy = z \) (say). Hence, \(z \) is a point of coincidence of \(S, T \) and \(f \) and so \(y = z \) by uniqueness. Thus \(y \) is the unique common fixed point of \(S, T \) and \(f \).

III. Competing Interests

Authors have declared that no competing interests exist.

IV. Acknowledgments

The authors have benefited a lot from the referee’s report. So, they would like to express their gratitude for his/her constructive suggestions which improved the presentation and readability.

References

