Nitric Oxide: A Unique Coordinating Molecule

R.K. Prasad1*, (Mrs.) Bina Rani2, M.K. Singh3, Abhay Kr.1, D.K. Verma1, M. Ranjan1, P. Kumar1, Sanjay Kr3, Randhir Kr3, Reena Kumari Sinha4 & Kumari Sangita5

1P.G. Department of Chemistry, Patna Univ. Patna – 800 005, Bihar, India
2Department of Chemistry, Magadh Mahila College, P.U., Patna – 800 001, Bihar, India
3Department of Chemistry, Patna Science College, Patna – 800 005, Bihar, India
4St. Joseph’s Convent, Bankipore, Patna – 800 004, Bihar, India
5P.G. Department of Chemistry, M.U. Bodhgaya, 824234, Bihar, India

Abstract: Nitric Oxide (NO) has one unpaired electron in Π(pi) antibonding molecular orbital which is highly reactive as it is located in higher energy level. The Π(pi)-antibonding orbital can take up one electron forming NO$^-$ or can loss its unpaired electron to form NO$^+$ ion whose common example is NO$^+$. HSO$_4^-$ known as Nitrousomiam Hydrogen Sulphate. Nitric oxide can coordinate to metal ions in low oxidation state as neutral (NO), cataonic (NO$^+$) or anionic (NO$^-$) coordinating molecule. The formation of a coordinate bond with metal atom as neutral (NO) anionic (NO$^-$) and (NO$^+$) coordinating molecule makes it a unique donor molecule. In a previous paper we have reported the formation of aquomono notroxylibis Biguanidum Cobalt (III) sulphate hydrate,

$$[\text{Co(Big H)}_2(\text{NO})_2(\text{H}_2\text{O})]\text{SO}_4 \cdot 1.5\text{H}_2\text{O} \quad \text{in which NO has been found to be coordinated as NO}^- \text{ group. In diamagnetic K}_3[\text{Co(CN)}_5(\text{NO})] \quad \text{and Na}_2[\text{Co(NO)}_2_4(\text{NO})(\text{OH})] \quad \text{the NO has been reported as NO}^+ \text{ group.}\$$

In most of the nitrosyls, mixed nitrosyl and carbonyl complexes, NO has been found to be coordinated as three electron NO$^+$ donor atom in which one of the IT antibonding molecular orbital electron is transferred to metal atom and highest occupied non bonding electron pair localised at N atom form σ coordinate bond to metal atom and filled tsg set of non bonding pair of electron forms backbonding to vacant antibonding (IT) orbital of NO$^+$ to make it highly strong IT acceptor ligand. 3

I. INTRODUCTION

The ligand NO (:N::O: \leftrightarrow :N::O:) might seem very simple compared to ligands containing N, O donor groups, but actually it possesses some of the most perplexing problems in complex chemistry. One source of difficulties is that it contain partly filled shell, NO$^+$ being isoeletronic with N$_2$ and CO and hence a very stable molecule, where as NO contains one and NO$^+$ two IT antibonding electrons. Another reason for the complications is that not only NO potentially ambidentate but there is X-ray crystallographic evidence that the line NO sometimes forms a smaller angle than 180° with the direction to the central ion. Finally there is some evidence that dimeric forms of NO may be involved in certain complexes.

NO often shows a tendency to lose an electron to give NO$^+$. The ionization potential for NO is much lower than for comparable molecules, viz., CO, N$_2$, etc. With its relatively low ionization potential one can readily understand the formation of the ionic compound NO$^+$. HSO$_4^-$, known as “Chamber crystals”, as well as NO$^+.\text{BF}_4^-$, NO$^+.\text{ClO}_4^-$, NO$^+.\text{FeCl}_4^-$, NO$^+.\text{SbCl}_6^-$, (NO$^+$)$_2\text{PtCl}_6$ etc., all of which gave ionizing solutions in appropriate solvents. Nitrosium perchlorate is perhaps the most stable nitrosium compounds. The crystals structure shows it to be a true salt, isomorphous with $\text{NH}_4^+.\text{ClO}_4^-$ and $\text{H}_2\text{O}.\text{ClO}_4^-$ but unlike these it is immediately hydrolysed in water.

Electronic configuration of nitric oxide molecule has been used to rationalize the two important reactions, namely combination with free radicals and formation of ionic nitrosium compounds with some poly atomic anions. A third reaction and froms the point of this study, the most important, is that of nitric oxide with transition metals to form a very diverse series of compounds. There are a number of ways in which NO could combine with metal. So far there is no direct evidence for the bond occurring between metal and oxygen and although bonding between the metal and the NO Π bond system of cobalt nitrosyl diethyldi-thiocarbamate is now beyond
question; this type of bonding has not been demonstrated in other compounds. There are three plausible methods of combination through nitrogen.

(i) Nitrogen forms a normal coordinate bond with the metal leaving the three electron N–O bond intact.

\[\text{M} - \text{N} = \text{O} \]

Such bond should confer reactivity and paramagnetism on the compound. The NO stretching frequency should not be far removed from that of nitric oxide at 1878 cm\(^{-1}\). Examples of this class are very rare perhaps the only example being Na\(_3\)[Fe(CN)\(_5\)]NO\(_3\).

(ii) Coordinate bond as in (i) together with transfer of an electron from the metal to the nitric oxide.

\[\text{M}^+ - \text{N} = \text{O}^- \]

There are relatively few compounds which illustrate this bond type, primarily because of the tendency of nitric oxide to realize the NO\(^+\) state. There is however no doubt of its occurrence in some cobalt compounds such as K\(_2\)Co(CN)\(_3\)NO and [Co(NH\(_3\))\(_2\)NO(NO\(_3\))]\(_2\). A low NO stretching frequency (1100 cm\(^{-1}\)) is expected in keeping with the formal N–O double bond.\(^6\)

(iii) Coordinate bond as in (i) together with transfer of an electron from nitric oxide to the metal.

\[\text{M}^- \text{N} = \text{O}^+ \]

This is by far the commonest type of bonding in the metal nitrosyls.\(^7\)

Magnetic and infra red absorption studies have been most useful in systematizing and interpreting the properties of the nitrosyls.

II. Magnetic Measurements

In sodium nitroprusside, we can consider the possibility or NO bonding in the three ways mentioned above. The observed diamagnetism permits an unequivocal assignment to the formula (CN)\(_5\)–Fe\(^{2+}\)–NO\(^+\)\. This is in keeping with the chemical evidences. The chromium compound K\(_2\)Cr(CN)\(_3\)NO\(_2\)H\(_2\)O has a magnetic moment of 1.87 B.M. at 25°C.\(^8\) This follows directly from coordination of NO\(^+\) and the one unpaired electron of Cr(I) in a spin paired configuration. The other possibilities, NO or NO\(^-\) should give rise to three unpaired electrons. By far the greatest majority of nitrosyls however are diamagnetic showing if nothing else that the neutral NO is unimportant as a donor.

III. Infra red Spectroscopy

Ideally an I.R. study of molecule is an analysis of all the possible modes of vibration in the molecule. For a many atom system this must be very complicated, but a study of large number of compounds having \(s \) groups in common shows that particular group absorbs over a narrow range of frequencies irrespective of the rest of the molecule. In accordance with this the nature of L and M should have little effect on NO in the compound L,M NO. Lewis et al\(^2\) have shown that the cationic (NO\(^+\)) stretching frequency falls in the range between 1940-1575 cm\(^{-1}\), while as the anionic NO\(^-\) stretching band is observed in the range between 1200-1000 cm\(^{-1}\), whereas nirosonium ion (NO\(^+\)) absorbs at about 2220 cm\(^{-1}\) and NO (nitric oxide) absorbs at 1876 cm\(^{-1}\). Infra red spectroscopy therefore can give highly significant information on the way in which the NO bonds.

Waddington and Klanberg\(^9\) measured the NO stretching frequencies of nitrosyl compounds such as NOBF\(_3\)Cl (2335 cm\(^{-1}\)), NOSbF\(_5\)Cl (2300 cm\(^{-1}\)), NOSbCl\(_4\) (1900 cm\(^{-1}\)) and NOAsCl\(_4\) (1860 cm\(^{-1}\)). The first two frequencies represent the free NO\(^+\) ion where as the latter two frequencies are near those of coordinated neutral and cationic (NO\(^+\)).

The diamagnetism of K\(_2\)Co(CN)\(_3\)NO could be explained in terms of either (CN)\(_5\) – Co(I) – NO\(^+\) or (CN)\(_3\) – Co(III) – NO\(^-\), but the infra red absorption shows the latter to be correct.

The red brown substance obtained by adding NaN\(_2\) to a cold solution of CoCl\(_2\) was originally formulated as Na\(_2\)[Co(NO\(_2\))\(_2\)]NaNO\(_2\)H\(_2\)O\(_2\)] by Nast and Rohmer\(^11\) showed it to be Na\(_2\)[Co(NO\(_2\))\(_2\)]OH.NO\(_2\)] since this compound exhibits a cationic NO\(^+\) stretching band 1720 cm\(^{-1}\).

The red and black pentamine nitrosyl cobalt nitrate [Co(NH\(_3\))\(_2\)]NO(NO\(_3\))]\(_2\) have been studied by i.r. spectroscopy and it has been established that the black series exhibits the NO stretching frequency at 1170 cm\(^{-1}\) and therefore does not have a cationic NO\(^-\) group. The red series, on the other hand, is monomeric and exhibits a NO stretching frequency between 1195 and 1045 cm\(^{-1}\) and therefore the structure must be [Co(NH\(_3\))\(_2\)]NO \(X^2 \).\(^12\) According to Raynor\(^13\) the red and black nitrosyl pentammines of cobalt, previously considered as having the NO formally bonded as NO\(^+\) have been reformulated as \((\text{NH}_3)\text{Co N}_2\text{O}_2\text{Co (NH}_3\text{)}\text{)}^+ \) (with a trans hypoxonite bridging group and M–N bond) and [Co(I) NO (NH\(_3\))]\(_2\) (with a NO\(^+\) group) respectively. Similar hypoxonite bridging structures are proposed for the nitrosylpentacyanocobalt ion and Ru and Fe nitrosyls.

Feltham and Nyholm\(^14\) have studied a new series of six coordinated mono nitrosyl complexes of cobalt. These complexes stabilized by using the bidentate ligands ethylenediamine and o-phenylenediamin(dimethylsarine) are of the type [Co X NOL\(_2\)]\(_2\) where X = Cl, Br, I, NO\(_3\), CNS; L = das, en, etc. The infra red and electronic spectra of these nitrosyl complexes show these to be complexes of Cobalt(III). From i.r. studies, the above compounds of
cobalt can be described in terms of a model which consists of a Co(III) ion coordinated to NO\(^-\) and other five ligands.

Jackson et al\(^{13}\) have prepared a variety of interesting nitrosyl complexes of cobalt. These compounds fit in the general formula Co\(_2\)(NO)\(_2\)X\(_2\). These compounds fall in two categories (1) [CoL\(_2\)(NO)]X\(_2\) where L = tetraziridine, ethylenediimine, pyridine, o-phenylenediamine and (2) [CoL\(_3\)(NO)]X where L = p-toulidine, aniline, triphenylphosphine. Magnetic data indicate that all these compounds are diamagnetic (or very slightly paramagnetic due in all probability to small amount of spin free cobalt(II) impurities). It seems reasonable to conclude that compounds do have diamagnetic ground state.

Reinhard Nast\(^{16}\) has studied the neutral or catonic nitrosyl compounds of cobalt(II) chelates. The title compounds are prepared from cobalt chelates of β-dicarboxyl compounds or the corresponding mono or di-thenocarboxyl compounds. It is prepared by the action of dry NO on cobalt(II) acetylenecarbonate in CH\(_2\)Cl\(_2\). It has the magnetic moment \(\mu_{\text{eff}} = 0.87\) B.M. Nitrosyl cobalt bis(salicilidene ethylenediamine) \(\mu_{\text{eff}} = 1.5\) B.M. was prepared in 80\% yield by treating a solution of oxygen free cobalt bis(salicilidene ethylenediamine) in CHCl\(_3\) with NO.

Cobalt nitrosyl halides show many similarities to their iron analogues. The parent compound Co(NO)\(_2\)I is dimeric but as CO\(^-\) had a d\(^{10}\) configuration, there is no need to invoke metal-metal interaction to account for the observed diamagnetism. In solution, triphenylphosphine breaks the chloride bridges of [Co(NO)\(_2\)Cl]\(_2\) to give the diamagnetic monomer [Co(NO)\(_2\)ClP\(_3\)] and fused triphenyl-phosphine again eliminates chlorine to give [Co(NO)(P\(_3\))] iso-electronic with the nitrosyl carbonyl and phosphate compound [Co(PO\(_3\))Cl\(_2\)]\(^{17}\). The reaction with the bidentate ligand o-phenanthroline is more complex and leads to the salt [Co(NO)\(_2\)Phen] [Co(NO)\(_2\)Cl]\(^{18}\).

Ruthenium forms a large number of nitrosyl complexes, most of which are remarkably stable, and in which the NO group is tenaciously held by the metal. No paramagnetic compounds are known and i.r. data proves bonding as NO\(^-\). The metal atom is formally Ru(II) i.e., d\(^8\), in the great majority of compounds and spin pairing appears to be the rule.

The tetrammine nitrosyls are an interesting group of compound obtained by treating K\(_2\)RuNOCl\(_3\) with ammonia.\(^{19}\) The aquo compound [Ru(NH\(_3\))\(_4\)NO\(_2\)H\(_2\)O]\(^{16}\) is difficult to prepare as it readily changes to [Ru(NH\(_3\))\(_3\)NO.OH]\(^{2+}\) even in water. The ammonia is readily replaced by ethylenediamine to give [Ru(en)\(_2\)NOX]X\(_2\) where X = OH, Cl, Br, I, but can never be replaced entirely by pyridine. Levitus and Raskovan\(^{20}\) have investigated the nature of the green compound K\(_2\)[Pt(NO\(_2\))\(_2\)]HCl, obtained by the action of conc. HCl on K\(_2\)[Pt(NO\(_2\))\(_4\)] at 0°C and have found to be a nitrosyl derivative with the formula K\(_2\)[Pt(NO\(_2\))(NO\(_2\))Cl\(_2\)] analogous to six coordinated nitrosyl compound obtained by Griffith, Lewis & Wilkinson\(^{21}\) in which NO\(^-\) group is present with frequency at about 1725 cm\(^{-1}\) in addition to coordinated nitro group.

Merer and Frasar\(^{22}\) studied the formation and dissociation of copper(II) nitrosyl complex in non-aqueous solvents.

ACKNOWLEDGEMENT

The first two authors Radhakant Prasad and Bina Rani are thankful to UGC (ERO, Kolkata) for the award of a Minor Research Project to them. Special thanks are due to Late Prof. S.P. Ghosh and Late Prof. J.N. Chatterjea, former Prof. & Head of the Deptt. of Chemistry, P.U. for inspiring us for doing Researches. No words are adequate to thank Prof. L.K. Mishra, Retd. Prof. P.U. for his constant encouragement.

REFERENCES