INFLUENCE THE LOCATION AND CRACK ANGLE ON THE STRESS INTENSITY FACTOR

Najah Rustum Mohsin
Southern Technical University, Technical Institute-Nasiriya,
Mechanical Technics Department, Nasiriya, The_Qar, Iraq

Abstract: This paper deals with the effect of crack oblique and its location on the stress intensity factor mode I (KI) and II (KII) for a finite plate subjected to uniaxial tension stress. The problem is solved numerically using finite element software ANSYS R15 and theoretically using mathematically equations. A good agreement is observed between the theoretical and numerical solutions in all studied cases. We show that increasing the crack angle β leads to decreasing the value of KI and the maximum value of KII occurs at β = 45°. Furthermore, KII equal to zero at β = 0° and 90° while KI equal to zero at β = 90°. However, there is no sensitive effect to the crack location while there is a considerable effect of the crack oblique.

Key Words: Crack, angle, location, tension, KI, KII, ANSYS R15.

I. INTRODUCTION

Fracture can be defined as the process of fragmentation of a solid into two or more parts under the stresses action. Fracture analysis deals with the computation of parameters that help to design a structure within the limits of catastrophic failure. It assumes the presence of a crack in the structure. The study of crack behavior in a plate is a considerable importance in the design to avoid the failure the Stress intensity factor involved in fracture mechanics to describe the elastic stress field surrounding a crack tip.

Hasebe and Inohara [1] analyzed the relations between the stress intensity factors and the angle of the oblique edge crack for a semi-infinite plate. Theocaris and Papadopoulos [2] used the experimental method of reflected caustics to study the influence of the geometry of an edge-cracked plate on stress intensity factors KI and KII.

Kim and Lee [3] studied KI and KII for an oblique crack under normal and shear traction and remote extension loads using ABAQUS software and analytical approach a semi-infinite plane with an oblique edge crack and an internal crack acted on by a pair of concentrated forces at arbitrary position is studied by Qian and Hasebe [4].

Patr ́ıci and Mattheij [12] mentioned that, we can distinguish several manners in which a force may be applied to the plate which might enable the crack to propagate. Irwin proposed a classification corresponding to the three situations represented in Figure 1. Accordingly, we consider three distinct modes: mode I, mode II and mode III. In the mode I, or opening mode, the body is loaded by tensile forces, such that the crack surfaces are pulled apart in the y direction. The mode II , or sliding mode, the body is loaded by shear forces parallel to the crack surfaces, which slide over each other in the x direction. Finally, in the mode III , or tearing mode, the body is loaded by shear forces parallel to the crack front the crack surfaces, and the crack surfaces slide over each other in the z direction.

Figure 1: Three standard loading modes of a crack [12].
The stress fields ahead of a crack tip (Figure 2) for mode I and mode II in a linear elastic, isotropic material are as in the follow, Anderson [13]

Mode I:
\[
\sigma_{xx} = \frac{K_I}{\sqrt{2\pi r}} \left[1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \right] \\
\sigma_{yy} = \frac{K_I}{\sqrt{2\pi r}} \left[1 + \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \right] \\
\sigma_{xy} = \frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right)
\]

Mode II:
\[
\sigma_{xx} = -\frac{K_{II}}{\sqrt{2\pi r}} \sin\left(\frac{\theta}{2}\right) \left[2 + \cos\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right) \right] \\
\sigma_{yy} = \frac{K_{II}}{\sqrt{2\pi r}} \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right) \\
\sigma_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left[1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \right]
\]

In many situations, a crack is subject to a combination of the three different modes of loading, I, II and III. A simple example is a crack located at an angle other than 90º to a tensile load: the tensile load σ_o, is resolved into two component perpendicular to the crack, mode I, and parallel to the crack, mode II as shown in Figure 3. The stress intensity at the tip can then be assessed for each mode using the appropriate equations, Rae [14].

Stress intensity solutions are given in a variety of forms, K can always be related to the through crack through the appropriate correction factor, Anderson [13]

\[
K(I, II, III) = Y \sigma \sqrt{a}
\]

where σ: characteristic stress, a: characteristic crack dimension and Y: dimensionless constant that depends on the geometry and the mode of loading.

We can generalize the angled through-thickness crack of Figure 4 to any planar crack oriented 90º - β from the applied normal stress. For uniaxial loading, the stress intensity factors for mode I and mode II are given by

\[
K_I = K_{I0} \cos^2 \beta \\
K_{II} = K_{II0} \cos \beta \sin \beta
\]

where K_{I0} is the mode I stress intensity when $\beta = 0$. The crack-tip stress fields (in polar coordinates) for the mode I portion of the loading are given by

\[
\sigma_{xx} = \sigma_{y} \cos \beta \left[1 - \sin \beta \sin \left(\frac{3\beta}{2}\right) \right] \\
\sigma_{yy} = \sigma_{y} \cos \beta \left[1 + \sin \beta \sin \left(\frac{3\beta}{2}\right) \right] \\
\sigma_{xy} = \sigma_{y} \sin \beta \cos \beta \cos \left(\frac{3\beta}{2}\right)
\]
II. **Materials and Methods**

Based on the assumptions of Linear Elastic Fracture Mechanics (LEFM) and plane strain problem, K_I and K_{II} to a finite cracked plate for different angles and locations under uniaxial tension stresses are studied numerically and theoretically.

A. **Specimens Material**

The plate specimen material is Steel (structural) with modulus of elasticity $2.07E5$ Mpa and poison’s ratio 0.29, Young and Budynas [15]. The models of plate specimens with dimensions are shown in Figure 5.

![Cracked plate specimens.](image)

Figure 5: Cracked plate specimens.

B. **Theoretical Solution**

Values of K_I and K_{II} are theoretically calculated based on the following procedure:

1) Determination of the K_I (K_I when $\beta = 0$) based on (7), where (Tada et al [16]):

$$Y = \left[\sec \left(\frac{\pi a}{2b} \right) \left(1 - 0.025 \left(\frac{a}{b} \right)^2 + 0.06 \left(\frac{a}{b} \right)^4 \right) \right]$$

2) Calculating K_I and K_{II} to any planer crack oriented (β) from the applied normal stress using (8) and (9).

C. **Numerical Solution**

K_I and K_{II} are calculated numerically using finite element software ANSYS R15 with PLANE183 element as a discretization element. ANSYS models at $\beta=0^\circ$ are shown in Figure 6 with the mesh, elements and boundary conditions.

![ANSYS models with mesh, elements and boundary conditions.](image)

Figure 6: ANSYS models with mesh, elements and boundary conditions.
D. **PLANE183 Description**

PLANE183 is used in this paper as a discretization element with quadrilateral shape, plane strain behavior and pure displacement formulation. PLANE183 element type is defined by 8 nodes (I, J, K, L, M, N, O, P) or 6 nodes (I, J, K, L, M, N) for quadrilateral and triangle element, respectively having two degrees of freedom (Ux, Uy) at each node (translations in the nodal X and Y directions) [17]. The geometry, node locations, and the coordinate system for this element are shown in Figure 7.

![Image](image_url)

Figure 7: The geometry, node locations, and the coordinate system for element PLANE183 [17].

E. **The Studied Cases**

To explain the effect of crack oblique and its location on the KI and KII, many cases (reported in Table 1) are studied theoretically and numerically.

<table>
<thead>
<tr>
<th>No. of Studied Cases</th>
<th>Type of Solution</th>
<th>Changed Parameter in this Case Study Name</th>
<th>Values</th>
<th>Location of the Crack</th>
<th>No. of Figures</th>
<th>Other Parameters</th>
</tr>
</thead>
</table>
| I | Theoretical and Numerical | a/b | 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7 | Model e | Figure 8a β=0°
Figure 8b β=15°
Figure 8c β=30°
Figure 8d β=40°
Figure 8e β=45°
Figure 8f β=50°
Figure 8g β=60°
Figure 8h β=70°
Figure 8i β=75° | a/b | σs =200 Mpa
2b = 0.1 m
2h = 0.125 m |
| II | Theoretical and Numerical | a/b | 0.25, 0.3, 0.35, 0.55, 0.6, 0.7 | Model b Model e Model h | Figure 9a
Figure 9b
Figure 9c
Figure 9d
Figure 9e
Figure 9f
Figure 9g
Figure 9h
Figure 9i | Model b Model e Model h | σt =200 Mpa
2b = 0.1 m
2h = 0.125 m |
| III | Theoretical and Numerical | β | 0°, 15°, 30°, 45°, 60°, 75° | Model b, e, h | Figure 10a KI
Model b, e, h | Figure 10b KII
Model d, e, f | 6t =200 Mpa
2b = 0.1 m
2h = 0.125 m
a/b = 0.3 |

Table 1: The cases studied with the solution types, models and parameters.
III. Results and Discussions

KI and KII values are theoretically calculated by (7 - 10) and numerically using ANSYS R15 with three cases as shown in Table 1.

A. Case Study I

Figures 8a, b, c, d, e, f, g, h and i explain the numerical and theoretical variations of KI and KII with different values of a/b ratio when \(\beta = 0^\circ, 15^\circ, 30^\circ, 40^\circ, 45^\circ, 50^\circ, 60^\circ, 70^\circ \) and \(75^\circ \), respectively. From these figures, it is too easy to see that the KI > KII when \(\beta < 45^\circ \) while KI < KII when \(\beta > 45^\circ \) and KI ≈ KII at \(\beta = 45^\circ \).

Figure 8: Variation of KI Num., KI Th., KII Num. and KII Th. with the variation of a / b and \(\beta \) for model e.

B. Case Study II

A compression between KI and KII values for different crack locations (models b, e and h) at \(\beta = 30^\circ, 45^\circ \) and \(60^\circ \) with variations of a/b ratio are shown in Figures 9a, b, c, d, e, f, g, h and i. From these figures, it is clear that the crack angle has a considerable effect on the KI and KII values but the effect of crack location is insignificant.
Figure 9: Variation of KI Num., KI Th., KII Num. and KII Th. with the variation of a / b for b, e and h model at β = 30°, 45° and 60°.

C. Case Study III
Figures 10a, b, c and d explain the variations of KI and KII with the crack angle β = 0°, 15°, 30°, 45°, 60°, 75° and 90° for models b, e and h. From these figures, we show that the maximum KI and KII values appear at β=0° and β=45°, respectively. Furthermore, KII equal to zero at β = 0° and β = 90°. Generally, the maximum values of the normal and shear stresses occur on surfaces where the β=0° and β=45°, respectively.
Figure 10: Variation of KI and KII with the crack angle: a and b) for model b, e, h and theoretical. c and d) for model d, e, f and theoretical. From all figures, it can be seen that there is no significant difference between the theoretical and numerical solutions.

Figure 11: Contour plots of Von-Mises stress with the variation of crack location at $\beta = 45^\circ$.
Furthermore, Figures 11 and 12 are graphically illustrated Von-Mises stresses contour plots with the variation of location and angle of the crack, respectively. From these figures, it is clear that the effect of crack angle and the effect of crack location are incomparable.

Figure 12: Countor plots of Von-Mises stress with the variation of crack angle at specific location.

IV. Conclusions

1) A good agreement is observed between the theoretical and numerical solutions in all studied cases.
2) Increasing the crack angle β leads to decrease the value of K_I and the maximum value of K_{II} occurs at $\beta = 45^\circ$.
3) K_{II} vanished at $\beta = 0^\circ$ and 90° while K_I vanished at $\beta = 90^\circ$.
4) There is no obvious effect to the crack location but there is a considerable effect of the crack oblique.

References

17. ANSYS help.