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I. Introduction 

Momentum and heat transfer in a boundary layer over a linear stretching /shrinking sheet has considerable 

interest in the recent and past years because of its over increasing industrial applications such as extrusion of 

plastic sheets, wire drawing, power and cooling industry for drying chemical industry hot rolling, glass fiber 

production and important  bearings on several technological processes. In particular, in the extrusion of a 

polymer in a melt-spinning process, the extrudate from the die is generally drawn and simultaneously stretched 

into a thin sheet, and then solidified through quenching or gradual cooling by direct contact with water or 

coolant liquid. Viscous dissipation changes the temperature distribution by playing a role like an energy source, 

which leads to affect the rate of heat transfer. The merit of viscous dissipation depends on whether the sheet is 

being cooled or heated. Such processes occur when the effect of buoyancy forces in free convection becomes 

significant. If the temperature of the surrounding fluid becomes high, then the thermal radiation effect play a 

vital role in the case of space technology. So the study of two-dimensional boundary layer viscous flow and heat 

transfer over a stretching surface with affect of buoyancy force and thermal radiation is very important as it 

finds a large scale of practical applications in different areas.  

The boundary layer flow on a continuously solid stretching surface with various aspects was first investigated 

by Sakiadis(1961). He considered the boundary layer flow over a flat surface moving with a constant velocity 

and formulated a boundary layer equation for two dimensional, axisymmetric flows. Due to entertainment of 

ambient fluid, this phenomenon represents a different type of boundary layer problem having solution 

substantially different from that of boundary layer flow over semi-infinite flat plate. Crane(1970) extended the 

work of Sakiadis by considering a moving strip, the velocity of which is proportional to the distance from the 

slit and obtained closed form exponential solution. Subsequently, many investigators taking the advantage of 

simplicity of geometry and its exact solution attempted the problem with variety of assumptions. Gupta and 

Gupta(1977),  Carragher and Crane(1982), Dutta et al.(1985) studied the heat transfer in the flow over a 

stretching surface with different aspects taking into account. Pal and Mondal (2014) analyzed the effects of 

temperature dependent viscosity and variable thermal conductivity on mixed convection problem by considering 

the wall heating conditions namely prescribed surface temperature and prescribed wall heat flux over a 

stretching sheet. They have solved numerically by using the fifth-order Runge-Kutta Fehlberg method with 

shooting technique.     

In the context of space technology and in processes involving high temperature the effects of radiation are of 

vital importance. Recent developments in hypersonic flights, missile reentry, rocket combustion chambers, 

power plants for interplanetary flight and gas cooled nuclear reactors, have focused attention on thermal 
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radiation as a mode of energy transfer, and emphasize the need for improved understanding of radiative transfer 

in these processes. The interaction of radiation with laminar free convection heat transfer from a vertical plate 

was investigated by Cess (1966)for an absorbing, emitting fluid in the optically thick region, using the singular 

perturbation technique. Arpaci (1968) considered a similar problem in both the optically thin and optically thick 

regions and used the approximate integral technique and first order profiles to solve the energy equation. Cheng 

and Ozisik (1972)considered a related problem for an absorbing, emitting and isotropically scattering fluid and 

treated the radiation part of the problem exactly with the normal mode expansion technique. Raptis (1998) has 

analyzed the thermal radiation and free convection flow through a porous medium by using perturbation 

technique. Hossain and Takhar(1996) studied the radiation effects on mixed convection along a vertical plate 

with uniform surface temperature using Keller Box finite difference method. Raptis and and Perdikis (1999) 

studied the effects of thermal radiation past a moving vertical plate. Das et al. (1996) have analyzed the 

radiation effects on the flow past a impulsively started infinite isothermal vertical plate and the governing 

equations are solved by Laplace transform technique. The natural convection flow with radiation effects past a 

semi infinite plate was studied by Chamkha et al(2001).       

The presence of dust particles in the flow of a viscous fluid has significant effect. The dust particles tend to 

retard the flow and to decrease the fluid temperature. Such flows are uncounted in a wide variety of engineering 

problems such as nuclear reactor cooling, rain erosion, paint spraying, transport, waste water treatment and 

combustion. Saffman (1962) initiated the study of dusty fluids and discussed the stability of the laminar flow of 

a dusty gas in which the dust particles are uniformly distributed. Dutta and Mishra (1980, 1982)have 

investigated the boundary layer flow of a dusty fluid over a semi infinite flat plate and an oscillating plate. 

Vajravelu et al (1992)have studied hydro magnetic flow of a dusty fluid over a stretching sheet including the 

effects of suction. Nandkeolyar and Sibanda(2013)investigated the two-dimensional boundary layer flow of a 

viscous, incompressible and electrically conducting dusty fluid past a vertical permeable stretching sheet under 

the influence of transverse magnetic field with the viscous and joule dissipation. Gireesha et. al.(2013) have 

studied the two-dimensional unsteady mixed convective flow of a dusty fluid over a stretching sheet with 

thermal radiation and space dependent internal heat generation /absorption. They used the well known RKF45 

method to solve the governing equations of both fluid and dust phases. MHD flow and heat transfer of an 

incompressible dusty fluid over a stretching sheet was investigated by Gireesha et al(2012). The similarity 

transformations are used to reduce the governing equations and are solved numerically by using Runge – Kutta 

– Fehlberg fourth – fifth order method(RKF45 Method). Heat transfer effects on dusty gas flow past a semi 

infinite inclined plate was studied by Palani et al.(2007). Recently Mishra and Tripathy (2011, 2013) have 

studied the boundary layer flow and heat transfer of two phase flow over a flat plate and wedge. 

Motivated by all these investigations, the present study explores the effects of the thermal radiation, thermal 

buoyancy, thermal conductivity, heat transfer due to fluid-particle interaction,  heat added to the system to slip-

energy flux in the energy equation of particle phase, heat due to conduction and viscous dissipation in the 

energy equation, effective volumetric force, fluid -particle interaction, particle –particle interaction, the 

momentum equation for particulate phase in normal direction have been considered in both the phases for better 

understanding of the boundary layer characteristics, which was not investigated by previous investigators. The 

effects of thermal conductivity and thermal radiation are included here; as this is true in some polymer solutions: 

thermal radiation plays a significant role in controlling the heat transfer in the polymer processing industries. 

The quality of the final product depends to a great extent on the heat controlling factors, and the knowledge of 

radiative heat transfer in the system can perhaps lead to a desired product with sought qualities. The governing 

coupled, non-linear partial differential equations of the flow and heat transfer problem are transferred into non-

linear coupled ordinary differential equations by using a similarity transformation. These coupled non-linear 

ordinary differential equations with variable coefficients subject to the appropriate boundary conditions are 

solved numerically by using Runge – Kutte fourth order scheme with shooting technique for several sets of 

values of the physical parameters like finite volume fraction   , Grashoff number      Prandtl number    , 

Eckret number     , radiation parameter     , diffusion parameter     on shear stresses      , wall heat 

transfer     and other boundary later characterstics. 

  

II. Mathematical Modeling and solution of the problem 

Consider a steady, two- dimensional laminar boundary layer of an incompressible viscous two-phase flow over 

a vertical linearly stretching sheet in the presence of radiation field. The flow is generated by the action of two 

equal and opposite forces along the  -axis and  -axis being normal to the flow. The sheet being stretched with 

the velocity         along the  -axis, keeping the origin fixed in the fluid of ambient temperature  . Both the 

fluid and the dust particle clouds are suppose to be static at the beginning. The dust particles are assumed to be 

spherical in shape and uniform in size and number density of the dust particle is taken as a constant throughout 

the flow. The radiative heat flux in the energy equation of both the phases is approximated by Rosseland 

approximation. Under these above assumptions, the governing equations of the flow and energy fields are given 

by  
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Where       and         are the velocity components of the fluid and particle phases along the   and   

directions respectively and        are the temperature of fluid and particle phase respectively.               

and        are the density, coefficient of viscosity and thermal conductivity of the fluid and particle phase 

respectively.          are the velocity and thermal equilibrium time of the particle cloud i.e. the time required 

by the particle cloud to adjust its velocity and temperature relative to the fluid respectively.         are the 

specific heat of fluid and suspended particulate matter(SPM) respectively.             are the radiative heat flux 

of the fluid and particle phase respectively.    is the finite volume fraction,    is the material density of the 

particle and    is the co-efficient of thermal expansion. 

Using Rosseland approximation, the radiation heat flux for the fluid phase     (Brewster(1972)) is given by  

      
   

    
 
   

  
                (8) 

Where    and    are Stephan Boltzman constant and mean absorption coefficient respectively. 

Here the temperature difference within the flow is assumed to be sufficiently small so that    may be expressed 

as a linear function of temperature    , using a truncated taylor series about the free stream temperature    to 

yield  

      
       

                 (9) 

Substituting equation (9) in equation (8), we obtain 

      
    

     

    
 
   

                 (10) 

Similarly, the radiation heat flux for the particle phase        is given by 
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The boundary conditions for the flow problem are given by 

                            
 

 
 
 

      as                                                            (12a)                                      

                       ,           ;    as                                                                           (12b) 

Where           is a stretching sheet velocity,    is the initial stretching rate being a positive constant and   

is the density ratio in the main stream.     is the wall temperature and   is a positive constant.  A is a positive 

constant,              is a characteristic length. For most of the gases          if   
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 . 

The equation (1) is identically satisfied through introducing the stream function                  , such that 

         and         . We further introduce the following transformations in the equations (2) to (7), 

to convert the governing equations into a set of similarity equations,   
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Where        
 

 
 
 

                
 

 
 
 

       

Substituting the above non-dimensional transformations (13) in (2)  to (7), we obtain the following non-linear 

ordinary differential equations. 

                                                                                                                                                      (14) 
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with boundary conditions 

                                              
                                                             (20a) 

                                                                                         (20b) 

Where prime denotes differentiation with respect to   ,           is the material density of the particle, 

        is the relative density and 

  
 

   
,  is the fluid-particle interaction parameter 

  
  

 
   is the diffusion parameter 

   
         

   
   is the local Grassoff number 

   
   

 
, is the local Froude number 

   
   

 
  is the Prandtl number 

   
    

   
, is the Eckret number 

   
        

   

      
, is the radiation parameter. 

The important physical parameter of the present investigation and the boundary layer flow is the local skin 

friction coefficient    is defined as, 

    
  

   
  ,                (21) 

where the skin friction    is given by 

      
  

  
 
   

                         (22) 

Using the non-dimensional variables,  

                                       (23) 

And the wall heat transfer rate i.e. the local Nusselt number     is defined as 

    
   

        
                          (24) 

Where the heat transfer from the sheet    is given by 

       
  

  
 
   

          (25) 

And using the non-dimensional variables, one obtain 
   

    
                    (26) 

Where     
  

 
 is the local Reynolds number. 

 

III. Numerical Simulation 

In order to integrate (14) to  (19) as an initial value problem, one require the values of                     

                   . But no such values are given at the boundary. The most important factor of shooting 

method is to choose the appropriate finite values for    . In order to determine     , we start with some initial 

gauss value for some particular set of physical parameters and obtain values for unknown boundary conditions 

differ only by a specified significant digit. The last value of    is finally chosen to be the appropriate  value of  

   for that particular set of parameters. The value of    may different for another set of physical parameters. 

Once the finite value of    is determined then the integration is carried out. We compare the calculated values 

for unknown boundary values at     . (say) with the given boundary conditions 

                                                     

and adjust the estimate values for unknown values of boundary conditions, to give a better approximation for the 

solution. i.e. We have supplied                         . The improved value of            is determined by 

utilizing linear interpolation formula described in equations (A). Then the value of          is determined by 

using Runge-Kutta method. If          is equal to      up to a certain decimal accuracy, then    i.e        is 

determined, otherwise the above procedure is repeated with                 until a correct    is obtained. 

The same procedure described above is adopted to determine the correct values 
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of                           . We take series values for unknown boundary conditions, and apply fourth 

order Runge-Kutta method with step size        . the above procedure is repeated until we get the results up 

to the desired accuracy, with an error of     . 

IV. Results and Discussion 

In order to get a physical insight into the problem, a parametric study is conducted to illustrate the effects of 

different governing physical parameters viz., the finite volume fraction    , Grashoff number      Prandtl 

number    , Eckret number    , radiation parameter    , diffusion parameter    upon the shear stresses     , 

wall heat transfer     as well as the nature of flow and transport and the numerical results are depicted through 

graphs and tables.  

The velocity and temperature profiles for both the phases are depicted in Fig.s 1 – 4 for the variation of diffusion 

parameter   . It is observed that the carrier fluid velocity increases with the increase of the diffusion parameter  

, and the skin friction coefficient also increases, which is shown in the Table – 1. But the particle velocity 

decreases with the increase of  . The carrier fluid temperature decreases with the increase of     and the particle 

phase temperature increases with increase of the diffusion parameter. Further it can be observed that the rate of 

wall heat transfer from plate to fluid is more with increase of  , as observed from Table-1. 

The variation of non-dimensional velocity and temperature field for both the phases is illustrated for different 

values of Grashof number      in Figs. 5 – 8.  Here, the positive buoyancy force acts like a favorable pressure 

gradient and hence accelerates the fluid as well as particle in the boundary layer. This results in higher velocity 

as the buoyancy parameter increases. From Fig. 7 & 8, it is clear that the thermal boundary layer of both the 

phases decreases with increase of    .  

The effect of Eckret number     , which signifies the viscous dissipation of the fluid, on the heat transfer, is 

exhibited in Fig. 9 & 10. It is observed that an increase in viscous dissipation of the fluid tends to increase in 

fluid temperature. The reason for this effect is that the viscosity of the fluid takes energy from motion of the 

fluid and transforms it into the internal energy of the fluid which results in the heating of the fluid temperature is 

encountered. The thermal boundary layer gets thicker with the increase in the viscous dissipation. Physically it 

means that the heat energy is stored in the fluid due to the frictional heating. But, due to two-phase interaction 

the particle temperature decays when the frictional heating is more. 

Figs. 11 & 12 represent the thermal boundary layer of both the phases for different values of thermal radiation 

parameter     . The effect of radiation is also to intensify the heat transfer. Thus the radiation should be 

minimum in order to facilitate the cooling process. This is agreement with the physical fact that the thermal 

boundary layer thickness increases with increase of     But the particle phase temperature decrease when 

radiation is more.  

Figs. 13 & 14 depict the non dimensional temperature profiles of both the carrier fluid phase      and the 

particle phase       versus    for different values of Prandtl number     . One can infer from these figures that 

the temperature of fluid and dust particles decreases with the increase in   , which implies momentum 

boundary layer is thicker than the thermal boundary layer. The fluid temperature decays asymptotically and 

approaches to zero in the free stream region.  

Table–1 shows the computations of the skin-friction coefficient      and Nusselt number     for various 

physical parameters in terms of         and        respectively.  The magnitude of shear stress increases with 

increase of finite volume fraction    , diffusion parameter   , Grashof number    , Eckret number     and 

radiation parameter     and decrease with the increase of the Prandtl number    . The rate of wall heat 

transfer significantly increases with the increase of diffusion parameter    , Grashof number     , Prandtl 

number     , and decreases with increase of Eckret number     and radiation parameter     .
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Fig.  1: Effect of diffusion parameter on velocity 

profiles of carrier fluid phase.     
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Fig. 2: Effect of diffusion parameter on velocity 

profiles of particle phase.
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Fig. 3: Effect of diffusion parameter on 

temperature profiles of carrier fluid phase 
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Fig. 4: Effect of diffusion parameter on 

temperature profiles of particle phase.
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Fig. 5: Effect of Grashof number on velocity 

profiles of carrier fluid phase.
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Fig. 6: Effect of Grashof number on velocity 

profiles of particle phase. 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0







1.0,01.0,001.0Gr

 
Fig. 7: Effect of Grashof number on 

temperature profiles of carrier fluid phase. 
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Fig. 8: Effect of Grashof number on 

temperature profiles of particle fluid phase. 
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Fig. 9: Effect of Eckret number on temperature 

profiles of carrier fluid phase. 
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Fig. 10: Effect of Eckret number on 

temperature profiles of particle phase. 
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Fig. 11: Effect of Radiation parameter on 

temperature profiles of carrier fluid phase 
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Fig. 12: Effect of Radiation parameter on 

temperature profiles of particle phase. 
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Fig. 13: Effect of Prandtl number on 

temperature profiles of carrier fluid phase. 
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Fig. 14: Effect of Prandtl number on 

temperature profiles of particle phase. 

 

 

Table 1: Effect of finite volume fraction, diffusion parameter, Grashof number,Prandtl number, Eckret 

number, Radiation parameter on shin friction and Nusselt number. 
                              
0.0 1.0 0.01 0.71 0.1 1.0 -0.99591 0.69439 

0.001      -0.99596 0.69397 

0.01      -0.99625 0.69537 

0.1      -0.99607 0.69388 

0.001 1.0 0.01 0.71 0.1 1.0 -0.99596 0.69397 

 2.0     -0.99528 0.69516 

0.001 1.0 0.001 0.71 0.1 1.0 -1.0017 0.69223 

  0.01    -0.99625 0.69537 

  0.1    -0.94147 0.70933 

0.001 1.0 0.01 0.71 0.1 1.0 -0.99596 0.69397 

   1.0   -0.99664 0.85434 

0.001 1.0 0.01 0.71 0.05 1.0 -0.99597 0.70105 

    0.1  -0.99596 0.69397 

    0.5  -0.99597 0.63826 

    1.0  -0.99562 0.56948 

0.001 1.0 0.01 0.71 0.1 0.0 -0.99735 1.05861 

     1.0 -0.99596 0.69397 

     3.0 -0.99489 0.46863 

     5.0 -0.99442 0.38464 

     10.0 -0.99395 0.30367 
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